Introduction
Since the last couple of decades, IT has become an integral part of our life. In this era of globalization, the social, economic and cultural boundaries have blurred. The exponential growth of IT in all spheres of life can be credited for the same.
Businesses have become extremely competitive. Innovative ideas are abundant in making lives better in all aspects. Technology controls every aspect of our life be it interaction through social media, banking, healthcare, agriculture, learning, entertainment etc. Due to this reason (for being heavily dependent on technology), every business is striving to make huge investment in IT facilities and Infrastructure.
All the above have also created a highly negative impact on environment, human health and natural resources. Initially IT was perceived as a non-polluting industry with no adverse effect on the environment. However, in the last decade this misconception has changed and the global community is becoming increasingly aware of its impact on climate change and global warming. One of the main causes is generation of E-waste at an alarming rate. It contains hazardous elements like lead, mercury, cadmium, black carbon etc. that are extremely dangerous for the environment and human life.
As per the report called Global E-waste Monitor 2014, published by United Nations University (UNU), the U.S. and China are the biggest contributors of E-waste, producing 32% of the overall global E-waste in 2014. As per this report, the overall volume will increase by 21% in the next three years. Developing countries like India are catching up fast; India being the fifth largest E-waste generator, with 1.7 Mt E-waste generated in 2014. Another major challenge faced by India is the lack of stringent regulations and legislations for E-waste disposal. As a result, many developed countries ship their E-waste to India. This has made India a global dumping yard. When these E-wastes are not disposed properly, it creates disaster to the nature and human life.
E-waste scenario in India
In 2017, the number of mobile phone users world-wide is projected as 4.77 billion. The global shipment figure for laptops, PCs and tablets together is close to 650 Million worldwide (Shipment forecast of tablets, 2016). As per a study, fortune 500 companies assign on an average 3.5 devices to each of their employees.
Due to this high volume of usage of electronic devices world-wide, the generation of E-waste is also increasing as a result of discarding old and obsolete devices. As per global statistics, electronic devices are producing 50 MT E-waste annually and it is growing at a rate of 5% every year. It has been predicted that this growth rate will be faster and by 2020, computer based E-waste will increase by 500% and mobile phone by 18 times compared to the year 2007 (C. VATS and SINGH, 2014).
In India, the IT industry has grown at a rate of 42.4% between the years 1995 and 2000 (C. VATS and SINGH, 2014). This includes growth in software as well as hardware sectors. The telecom industry has grown very fast in the last decade and mobile phones have penetrated deep into the rural India as well. The total mobile phone subscriber base crossed the 1 Billion mark in October 2015 (Telecom Regulatory Authority of India, 2015). Moving towards newer technology, frequent upgrade of infrastructure etc. have resulted in discarding obsolete electronic equipment and network infrastructure at an alarming rate. These mainly include PCs, laptops, servers, mobile phones, televisions, music systems and other electronic devices used by industries as well as for personal use. Considering a population of 1.25 billion, this is a cause of great worry for India.
The main challenges are rapid growth of cities, lack of landfills, lack of awareness among people and low environment standards set by government. Due to low environment standards and absence of stringent environment laws, many multinational companies from the developed countries ship their E-waste to India for disposal. Although the per-person GHG emission in India is significantly low compared to developed countries like USA and Germany, the poorest of the poor in India remain most vulnerable to the health hazards caused by it.
Proper disposal of E-waste:
The policy of Reduce-Reuse-Recycle-Refurbish is very relevant to E-waste management. By reusing and recycling hardware components like ink cartridges, old PCs instead of throwing them away, reduces the landfill requirement. Most of the unwanted electronic equipment land up in landfills which should never be the case. In order to avoid accumulation of toxic materials in the landfills, infrastructure for recycling and refurbishing must be developed.
As per the reports published with respect to India, 60% of E-waste remains in the warehouses or storages. Only 40% is made available for recycling by both formal and informal recyclers. In the recycling process, as high as 95% of the E-waste is used for refurbishing. Only 5% needs to be disposed (C. VATS and SINGH, 2014). This shows the huge potential for energy saving and pollution reduction by the recycling process.
As part of the E-waste management policy, strategies should be drawn out for the main action items such as Collection, Recycling and Disposal. Multiple levels of collection points (local, urban, state level etc.) should be created for maximum amount of collection of E-waste. Awareness should be generated among the local population about the harmful effects of E-waste if not handled safely. Infrastructure and training facility should be provided to the registered E-waste recyclers for easy recycling and disposal (C. VATS and SINGH, 2014).
Some other measures can also be taken to minimize the E-waste. E.g. instead of using toxic materials like lead, other more environment friendly materials like copper and silver may be used.
Conclusion
A robust E-waste management policy includes reduce, reuse and recycle of E-waste. There could be guidelines that reduce E-waste generation e.g. unnecessary printing. The policy should take into consideration more efficient recycling of electronic scraps whereby useful scraps can be reused and the harmful components are safely disposed. In developing countries like India, this can be a sustainable business model with job creation, skill development of the local population and environment benefits.
References
VATS, M. and SINGH, S. (2014). Status of E-waste in India – A Review. International Journal of Innovative Research in Science, Engineering and Technology, 03(10), pp.16917-16931.